
Executive Summary

At the University of Victoria (UVic), course registration is a difficult and stressful process for
students. Although registration is somewhat straightforward for those individuals that manage
to follow their curriculum throughout their degree, it can become an enormous headache for
students who get behind in their courses due to illness, poor grades, or other reasons. The web
applications provided by the University and third parties for registration have a number of
problems that Puzzle would like to address by providing a new website that serves as a
complete solution for student’s degree planning needs.

There is a website developed by a past student at UVic called ScheduleCourses.com which
serves as a significant improvement to the University provided site. It allows students to select
a list of courses, and then shift the course times selected around in order to make an ideal
schedule. It provides a dynamic visualization of your timetable which is very helpful for
mitigating conflicting course times.

The most significant issue with ScheduleCourses.com is that there is no simple way to view
how your selection of courses in a particular semester will affect your final goal of completing
your degree program. Often, students will fail to register in a prerequisite during a particular
term. This will cause them to be unable to take required courses in the future, putting them
further behind in their degree. Similarly, courses are often offered in specific terms, and an
unaware student may need to wait a year to take a particular course. Our system will attempt
to take into account a user’s program requirements and provide a means of visualizing how
their selected registration will affect their final graduation date, and future schedule
requirements.

This is a fairly large project which will require a lot of data entry regarding various program
requirements at UVic. As such, Puzzle will develop a proof of concept that shows how our
course scheduling system will work with the Software Engineering program at UVic. If this
concept is satisfactory, it will then be possible to move forward with the other programs
offered at the school.

S2a Conceptual Design Document

Graduate!

University Degree Planner

Created by: Puzzle

Authors:

Brendan Heal
Jonah Rankin

Ali Nobari
Spencer Mandrusiak

Table of Contents

Executive Summary .. 1

1.0 Project Summary .. 5

1.1 Important Features ... 5

1.2 Hardware .. 5

1.3 Performance ... 5

2.0 User Interaction .. 6

2.1 Application Views ... 6

2.1.1 Front Page ... 6

2.1.2 Login Page.. 6

2.1.3 Program Management Page .. 6

2.2 Use Case Diagram ... 8

2.3 User Use Cases ... 9

2.3.1 Registration ... 9

2.3.2 Login .. 10

2.3.3 Mark Courses Complete .. 11

2.3.4 Alternate - Mark Courses Complete .. 11

2.3.5 Add Courses to Schedule ... 12

2.3.6 Move Courses .. 13

2.3.7 Fit Unscheduled Courses ... 14

2.3.8 Setting Generation Preferences ... 15

2.4 Administrator Use Cases ... 15

2.4.1 Administrator Login ... 15

2.4.2 Disable User ... 15

2.4.3 Delete User .. 16

2.4.4 Create New Course .. 16

2.4.5 Edit Course... 17

2.4.5 Delete Course .. 18

2.5 Glossary .. 19

3.0 Management Plan .. 19

3.1 Feature Breakdown .. 20

3.1.1 Course Scheduling Algorithm ... 20

3.1.2 Intuitive Interface Design... 20

3.1.3 User Interface Layout .. 20

3.1.4 Data Collection/Scraping ... 21

3.1.5 Database Creation ... 21

3.1.6 Netlink Integration... 21

3.1.7 User Authentication ... 21

3.2 Possible Implementations .. 21

3.2.1 Deployment ... 21

3.2.2 Persistent Storage .. 22

3.2.3 Server-side Technologies ... 22

3.2.4 Client-side Technologies .. 22

3.3 Minimal System .. 22

3.3.1 Summary.. 23

3.4 Team Structure and Organization ... 23

3.4.1 Web Application Development - Brendan Heal ... 23

3.4.2 Database Creation - Ali Nobari .. 23

3.4.3 User Interface Development - Jonah Rankin.. 24

3.4.4 Course Scheduling Algorithm - Spencer Mandrusiak ... 24

4.0 Conceptual Design .. 25

4.1 Application Flow Diagram ... 25

4.2 Activity Diagram ... 26

4.3 Program Management Page Statechart Diagram ... 27

4.4 Class Diagram ... 27

4.4.5 Observer Pattern ... 28

4.4.6 Façade Pattern ... 28

4.4.7 Singleton Pattern ... 28

1.0 Project Summary

The Graduate! web application will help students at the University of Victoria plan their degree by
providing students with tools to create custom tailored schedules, which accommodates each
individual’s specific needs. Many University programs have highly specific degree requirements and the
University of Victoria is no different. Just Right Showers has expressed interest in commissioning a
system that will assist UVic students by planning their entire degree. Puzzle’s Graduate! system will help
users by allowing them to customize certain aspects of the schedule, such as having no evening classes
or only four classes in a semester, to accommodate for the busy lifestyle of a university student. This will
give students more freedom when planning out their degree and also help them keep track of what they
have or have not completed. Another way Graduate! benefits students is it will automatically regenerate
a new schedule if a student marks that they have failed a course; therefore the student will not have to
deal with the burden of rearranging their schedule if such an unfortunate event occurs.

1.1 Important Features

Graduate! has many important features such as:
● Generate a schedule for a specific degree/program. Users maintain one program schedule. To

facilitate schedule experimentation, users will be able to undo changes. All changes a user
makes are immediately saved.

● Allow users to customize aspects of the schedule such as number of courses per term, time
preferences, and specify any work terms to avoid classes being scheduled during that time

● Make automatic adjustments to the schedule if a user makes alterations, changes their
preferences, or fails a course

● Allow a user to manually enter desired courses such as when students have not declared their
program

● Adheres to University restrictions on courses such as term offerings, pre and co-requisites,
maximum credits per term, etc.

● Allow user to view, update and save the schedule to their profile, as well as make modifications
at a later date

1.2 Hardware

Our software will run on all major operating systems including: Mac OS X, Linux, and Windows.
Graduate! will be designed to run on any modern HTML5 compliant browser including: Chrome, Firefox,
Safari, and Internet Explorer.

1.3 Performance

Graduate! is expected to be available at least 95% of the time in a year (approximately 18 days of
down time) and leave users without access to their schedules for no more than 48 hours at a time.
While Graduate! is not safety critical software, it is important that scheduling services be available for
users and that course registration will not be compromised because of a failure of the Graduate! system.

The course scheduling algorithm is expected to complete in less than 5 seconds, and during

processing it must provide the user with feedback.

What kind of undo feature are planning to put in? Will it support multiple
undos?

We think that 95% is a good amount of availibility, but can you tailor it
so that there is as little down time as possible (~99% availibility) in crucial registration
periods at the University? (such as the beginning and ending of semesters)

kgarland
Highlight

kgarland
Highlight

kgarland
Highlight

At Puzzle we value our users privacy and the final product will utilize industry standard encryption
and security practices to protect user information.

2.0 User Interaction

2.1 Application Views

2.1.1 Front Page

The Front Page is the landing page for the application with options to register, login, and get
more information about Graduate!.

2.1.2 Login Page

The Login Page contains a form for users to enter their Email and Password. The Cancel
button returns the user to their previous page — most commonly the Front Page. The Login
button proceeds with login validation. If the submitted credentials are valid the user is taken to
the Program Management Page. The Login Page may alternately appear as a modal window
over-top the previous view.

2.1.3 Program Management Page

The Program Management Page is the home view for the application. From this view a
logged-in user will be able to:

● Review their schedule including completed classes, the current semester and future
semesters.

● Add, modify, and remove courses
● Define program preferences
● Auto-generate schedules based on their preferences.

Figure 1: Mock-up of Program Management View

2.2 Use Case Diagram

Figure 2: Use Case Diagram

2.3 User Use Cases

2.3.1 Registration

When a user first accesses the web application they arrive at the Front Page; users have the
option to Login or Register. When the registration button is pressed the registration process
begins:

1. The user enters their account information including: Email, Password, and University.

After entering their information, the user presses the Next button to proceed to the
second registration step.

2. The user specifies their course and program information. First, the user selects their
program. Choosing a program populates the required courses list. Optionally, the
program can be unspecified and all classes must be added manually. Second, the user
adds other courses, as well as specifying electives.1 Third, the user marks all the courses
in the list that they have completed. After all program information has been entered,
the user finalizes account registration by pressing the Finish Registration button.2,3

3. After finishing the registration process, the user is redirected to the Program
Management Page.4

1 It is not required for users to specify all electives to register. Initially electives will be

specified as generic classes such as Technical Elective or Complementary Study. In order to
schedule an elective, it must be a specific course. This can be done after the registration
process.

2 Users will have the option to modify program details and add or remove courses after
registration.

3 The course and program specification process may be simplified through integration with a
user’s UVic account. This would allow for automatic retrieval program information and
completed courses.

4 Account confirmation emails are not a high priority for initial prototypes. They will be
implemented if time permits. If account confirmation is implemented, users will be sent to
the login page and notified that they must check their email and confirm their account.

Error Handling
Incomplete Registration: If a user attempts to register for Graduate! without filling out all
required sections of the form, they will not be able to register. A notification will pop-up
informing the user that they have not filled out all required sections. They will continue to
receive this notification until they have filled in the missing sections.

Figure 3: Registration Sequence Diagram

2.3.2 Login

When arriving at the applications Front Page, pressing the Login button brings the user to
the Login Page. On the Login Page, the user enters their email and password. They then press
the Login button, which redirects them to the Program Management Page. Alternatively, on the
Login Page the Cancel button returns the user to the Front Page.

Sample Interaction: Jane has just arrived at the Front Page of Graduate!. Since she already

has an account, Jane selects the Login button, bringing her to the Login Page. Jane enters her
email and password, followed by pressing the Login button. Once authorized, Jane is brought to
the Program Management Page.

Error Handling
Incorrect Login: If a user attempts to login with an invalid username or password, they will

be denied access to Graduate!. A notification will be displayed informing the user that the
username or password they entered is invalid.

Cancel: If the user selected the login button and does not want to login, they may select

Cancel to return to the front page.

2.3.3 Mark Courses Complete

Once registration has been successfully completed, Graduate! will automatically mark
courses as completed based on the user’s transcript. Graduate! will update completed courses
each time the user logs in to the application.

Sample Interaction: Jay has already started using Graduate! and has a generated schedule.

Because Jay has just finished his term and passed his courses, one of which is “SENG 321”, he
navigates to the Program Management Page. When Jay arrives at the page, he selects View
Schedule and notices that Graduate! has already marked “SENG 321” as complete.

2.3.4 Alternate - Mark Courses Complete

Upon registration, the user will be prompted to select all courses which they have already
completed. Alternatively, the user may go to the Program Management Page and select Add
Completed Course, where they will search for the appropriate course. Once they have found the
desired course, the user marks a checkbox indicating the course has been completed.

Sample Interaction: Jay has already started using Graduate! and has a generated schedule.

Because Jay has just finished his term and passed his courses, one of which is “SENG 321”, he
navigates to the Program Management Page. When Jay arrives at the page, he selects the Add
Completed Course button, which displays a list of all courses relevant to Jay’s degree. Jay
searches for “SENG 321” and selects the checkbox indicating he has completed the course.

Error Handling
Add incorrect course: If a user marks a course as complete that should not be completed,

the user must simply uncheck the box, indicating the course is not completed.

Figure 4: Mark Course Complete Sequence Diagram

2.3.5 Add Courses to Schedule

A registered user will be able to add courses to their schedule. On the Program
Management Page, the user opens the Course Management Menu. From the Course
Management Menu the user can select courses as specified by their program requirements or
by search. To add courses to a term the user drags the course from the Course Management
Menu to the desired term on the Program Management Page.

Initially the Program Management Page will contain no courses. On screen prompts will

direct first time users to the Course Management Menu. The prompts for first time users will
introduce them to the basic functions of Graduate! including:

● The Course Management Menu
● Selecting electives
● How to add courses to a term
● How to move courses between terms
● How to use the Fit Unscheduled Courses option to automatically generate a schedule

according to specific preferences

In the case where a student adds a course when and its prerequisite is not scheduled1, the

system will display clear visual identification2.

1 Prerequisite conflicts may occur for courses that have multiple unmet prerequisites. In
the case where the prerequisites do not apply to fulfilling degree requirements a
notification will appear. For example: A computer science student wants to take POLI
410 which has the prerequisites POLI 310A and POLI 310B. A notification will inform the
users that if they take POLI 410 the prerequisites may not be applicable to the
completion of their degree.

2 Clear identification may include a red tint, exclamation icon, and/or pop-up notification.

Sample Interaction: Jay has recently finished registering for Graduate!. When he arrives at
the Program Management Page, after logging in, a pop-up window directs his attention to the
Course Management Menu button, he clicks it and the Course Management Menu appears. Jay
wants to add MATH 122 and CSC 225 to the same term as his friends so he drags them from the
Menu to the Summer 2017 term.

2.3.6 Move Courses

On the Program Management Page, courses can be shifted between semesters by drag-and-
drop. The user will be notified graphically if they are moving a course to an incorrect semester.
This notification will appear for:

1. Missing prerequisites
2. Course not offered during the semester1

1 Criteria 2 depends on the release of course schedules — usually 4-8 months ahead of their
offering. If a course is moved beyond this date, the system will use the historical data to
determine if the course is likely to be offered. A notification will also appear informing the
user that offerings are subject to change.

Sample Interaction:Jane decides she no longer wants to take “CSC 225” in the summer

semester. Thinking ahead, Jane determines the only other available semester for this course is
in the fall. Once Jane arrives at the Program Management Page, she drags “CSC 225” from her
summer semester schedule to her fall semester schedule. Graduate! verifies the course is
available during this semester, and that Jane has the proper prerequisites. Upon success,
Graduate! automatically saves the new schedule.

What about the case where a student enters a course that they have prerequisites for
and it's offered the semester they want to move it to, but it conflicts with one of courses already
in that semester? For example, trying to move CSC 225 in a semester where you already have CSC 226.

Our suggestion is that the program will automatically move the course to the next available time slot within the
parameters given.

kgarland
Highlight

Figure 5: Move Courses Sequence Diagram

2.3.7 Fit Unscheduled Courses

The schedule generation performed by Graduate! will fit existing unscheduled courses to
the existing program schedule. To fit their unscheduled courses a user first navigates to the
Program Management Page. In the Unscheduled Courses panel, the user clicks the Fit Courses
button. A pop-over notification will inform the user that schedule generation is being
performed. When complete, the notification will update allowing the user to undo the changes
made. Fitted courses will be temporarily tinted1 so that users can see the changes to their
schedule.

In the case that a schedule cannot be generated, such as if the criteria is too restrictive, the

user will be informed that only a partial match was achieved. The notification will detail the
criteria which was and was not considered and users will have to ability to undo any changes
made. As with successful generation, courses added to the schedule will be temporarily tinted1.

1 Tinted courses will exist while the schedule notification is visible. Once the user closes

the notification all courses will appear normally.

Sample Interaction: Jane has recently completed all of the information required to create a

schedule. There are a few courses which she knows she wants to take in the coming semester
because her friends are also taking them. From the Unscheduled Courses panel she drags the
courses she wants to take into her program schedule. For her remaining unscheduled courses
Jane presses the Fit Courses button. A notification pop-up up saying her courses are being
scheduled, in a few seconds the notification informs her that a match was found. She can easily

observe the changes to her schedule by seeing the tinted courses. Jane likes her schedule, and
she closes the notification.

2.3.8 Setting Generation Preferences

When a user clicks the Fit Unscheduled Courses button a settings window will appear. On
this window the user will be able to specify their target graduation date and their desired
numbers of courses per term. Users will be able to prioritize their preferences, prioritization will
assist the course generation algorithm in finding partial matches. After all settings are specified
a user can generate their schedule by pressing the Generate Button. User’s close the
preferences window by pressing Cancel.

A user's preferences will be retained and reused the next time a schedule is generated.

Sample Interaction: Jay has been using Graduate! for some time now. Jay decides for his

next semester he does not want more than four classes, so he navigates to the Project
Management Page and opens the Course Management Menu. Jay presses Fit Unscheduled
Courses button then sets the “Maximum Courses per Term” option to “4” and changes it to the
top priority. He then clicks Generate, and a schedule with only four courses per term is
generated.

2.4 Administrator Use Cases

2.4.1 Administrator Login

When arriving at the applications Front Page, pressing the Login button brings the
administrator to the Login Page. On the Login Page, the administrator enters their email and
password. They then press the Login button, which redirects them to the Administrator Page.
Alternatively, on the Login Page the Cancel button returns the administrator to the Front Page.

Sample Interaction: Steve has just arrived at the Front Page of Graduate!. Since he already

has an administrator account, Steve selects the Login button, bringing him to the Login Page.
Steve enters his email and password, followed by pressing the Login button. Once authorized,
Steve is brought to the Administrator Page.

Error Handling
Incorrect Login: If an administrator attempts to login with an invalid username or password,

they will be denied access to Graduate!. A notification will be displayed informing the
administrator that the username or password they entered is invalid.

2.4.2 Disable User

 Once the administrator has successfully logged in, they select View Users. This will
 display a list of all current users in the system. The administrator then scrolls through the
 list to find the username desired. Alternatively, the administrator may simply enter the
 desired username into the search box in the View Users section. Once the user has
 been found, the administrator selects the profile, followed by Disable User.

 Sample Interaction: Steve is an administrator for Graduate!, therefore when he logs in,
 he has all options that an administrator has. Steve is directed by his boss to disable the

user with the username “user123”. He selects View Users, and types “user123” into
the search box. Steve selects the profile, and disables it by pressing Disable User.

2.4.3 Delete User

 Once the administrator has successfully logged in, they select View Users. This will
 display a list of all current users in the system. The administrator then scrolls through the
 list to find the username desired. Alternatively, the administrator may simply enter the
 desired username into the search box in the View Users section. Once the user has
 been found, the administrator selects the profile, followed by Delete User. They will be
 prompted with, “Are you sure?”. The administrator will select Yes.

 Sample Interaction: Since Sarah is an administrator, when she logs in she has

administrator options. Sarah’s boss has instructed her to delete the user with the
username “userSmith”. She selects View Users, and enters “userSmith” into the search
box. Sarah then selects the user profile, and selects Delete User. Graduate! prompts
her with a notification saying, “Are you sure?”. Sarah selects Yes.

2.4.4 Create New Course

 After successfully logging in to Graduate!, an administrator will select View Courses. In
 the upper right hand corner, they will select Add Course. This will display a form for the

administrator to fill out with fields such as Course Name, Course Description,
Prerequisites, and Co-requisites. Upon completion of filling out the form, they will
save the information by clicking Finish & Save. Alternatively, if the administrator does
not want to save the filled in information, they will select Cancel.

Sample Interaction: Sarah discovers the course “SENG 321” has not yet been added to
the Graduate! system. She first logs into her administrator account, and selects View
Courses. Once the page loads, she selects Add Course. Sarah fills out the required
information for the course and looks it over for any errors. Since she is satisfied with her
work, she selects Finish & Save.
 There were no requirements for making an administration role for this software. We can't see of any reason

why a person would need to disable or delete a user. Please justify why this feature is needed.

As for adding and editing courses, it seems like your project tries to do two approaches simultaneously: one
where the design is completely integrated with UVic's systems, and the other where it takes a more third-party
approach.

If the system is completely integrated, there would not be a need for the system to have this administration built
in, as the University would handle it on their end. (They also wouldn't need the delete/disable tools, as your account
would be tied in with your University account).

If the system is being designed with the third-party approach, we can see why the Edit/Create/Delete courses
functions would be useful.

Please decide on which approach you would like to pursue, instead of trying to do both at the same time. We
suggest the third-party approach, with the option to integrate with UVic systems in the future.

kgarland
Highlight

Figure 6: Create New Course Sequence Diagram

2.4.5 Edit Course

 Once the administrator has successfully logged in, they select View Courses. This
 will display a list of all courses in the Graduate! system. The administrator can either
 scroll through the list of courses until they find the desired course, or they can simply
 type the name of the course into the search box on the View Courses page. The
 administrator selects the appropriate course, followed by Edit Course. When the

administrator is finished editing, they select Save.

Sample Interaction: Steve notices an error in the spelling of the course name “SNG 321”,
so he logs into his account with administrator privileges. Steve selects View Courses
and scrolls through the list until he finds “SNG 321”. He selects the course, followed by
Edit Course. Steve then corrects the error and changes the course name to “SENG
321”. Now that Steve has finished his corrections, he finishes by selecting Save.

Figure 7: Edit Course Sequence Diagram

2.4.5 Delete Course

Once the administrator has successfully logged in, they select View Courses. This
 will display a list of all courses in the Graduate! system. The administrator can either
 scroll through the list of courses until they find the desired course, or they can simply
 type the name of the course into the search box on the View Courses page. The
 administrator selects the appropriate course, followed by Delete Course. They will be
 prompted with, “Are you sure?”. The administrator will confirm by selecting Yes.

 Sample Interaction: While going through the course list, Sarah notices that “ECON
 103C” is still listed as an available course. Because Sarah knows this course is no
 longer offered at the University of Victoria, she logs into her account with administrator

privileges. She selects View Courses and types “ECON 103C” into the search box.
Sarah then selects the course, and clicks Delete Course. Graduate! prompts her with a
notification saying, “Are you sure?”. Sarah confirms by selecting Yes.

Error Handling
Deleting an active course: An error should warn the administrator that they are about to

delete a course that is being used by students and is as well offered by the University. If the
administrator sees fit, they can delete the course from the database.

Figure 8: Delete Course Sequence Diagram

2.5 Glossary

Framework: A collection of software libraries that provide generic functionality that can be customized
or extended. A framework provides a fast way to implement a commonly needed
function.

Bootstrap: A HTML, CSS, JavaScript framework that facilitates fast and clean user interface design

Operating System: System software that manages computer hardware and software resources and

provides common services for computer programs (reference:
https://en.wikipedia.org/wiki/Operating_system)

Use Case: A list of steps defining the interaction between a role and a system, to achieve a

goal (reference: https://en.wikipedia.org/wiki/Use_case)

Web Application: A client-server software application in which the client (or user interface) runs in a
web browser (reference: https://en.wikipedia.org/wiki/Web_application)

3.0 Management Plan

3.1 Feature Breakdown

The core features of the Graduate! application is its course scheduling algorithm, intuitive user
interface, user authentication, course and user data storage, course information collection, and Netlink
integration.

3.1.1 Course Scheduling Algorithm

To obtain an “optimal” program schedule multi-stage processing will be performed. The stage
generates options that satisfy University constraints, course prerequisites and terms in which
courses are available. The remaining stages generate schedules which satisfy the constraints
provided by the user such as graduation data and courses per term. User specified constraints will
be processed in the order specified. Users will be able to prioritize their preferences (refer to
Change User Preferences use case). If the algorithm cannot satisfy all the provided constraints the
system will provide a schedule satisfying their highest priority constraints (the user will be notified
that some preferences could not be satisfied). If there would be multiple schedules satisfying all
constraints the first schedule found will be returned (If all preferences are satisfied the algorithm
will determine that the schedule is “optimal” and in the interest of performance the result will be
returned immediately).

3.1.1.1 Implementation Details

A vertex graph will be constructed using a table of the courses that need to be scheduled, the
courses that are already scheduled, and their prerequisites. By traversing this graph in topological
order a list of valid course schedules will be created in such that no course is taken before its
prerequisite. Next, the list will be processed such that courses are available only in the terms in
which they are offered, while still maintaining the prerequisite constraint. Variations of the
schedules will be examined ensuring that user preferences, as prioritized are satisfied. If a
schedule is generated that satisfies all preferences it will be returned. If no schedule satisfies all
preferences the system will backtrack until a schedule is found which satisfies the user's highest
priority schedules.

3.1.2 Intuitive Interface Design

The creation of an easy to learn and use interface is critical in the creation of this application.
To achieve this goal the Graduate! will utilize modern web application features such as drag-and-
drop modification of schedules. Beyond the use of modern tool providing the user with constant
feedback will provide the information as to whether or not they are performing valid actions when
modifying their schedule. If a user attempts to reorder a course such that it is in the term before
its prerequisite there will be clear indication on screen that the action cannot be completed and
the courses will revert to their previous valid position. It will be possible for users to override
course prerequisites so that department course accommodations can be input.

3.1.3 User Interface Layout

How does the user state which constraints are the highest priority?

If there are multiple possible schedules that match all constraints, will
there be a way to view the different options? For example, in ScheduleCourses, every
time a user says to generate a schedule, it randomly selects which one to show.

kgarland
Highlight

kgarland
Highlight

kgarland
Highlight

To maximize the screen area a side, or top, menu bar will provide the user with quick access to
additional features such as the selection of new courses, the modification of schedule
preferences, and changes to account information. Refinement of the user interface will occur
through rapid prototyping utilizing styling framework tools provided by bootstrap.

3.1.4 Data Collection/Scraping

The data for both the courses and their pre-requisite/co-requisite can be collected from the
UVic databases. The information collected also includes the term in which the courses are offered
in and the lab sections that come with it. The data is then transferred onto the personal server,
where the course scheduler will be retrieving the data from.

3.1.5 Database Creation

A database will be developed created that stores all the relevant information for the
Graduate! application. The database will need to store the collected program requirements in
order to associate the courses based on prerequisites, corequisites ,labs, electives and alternates.
Similarly, the course offerings will be stored based on the particular semesters they are offered.
User information and their saved schedule will also be stored in the database.

3.1.6 Netlink Integration

Using your Netlink account, the service is able to view the courses that a user has already
taken, or is enrolled in. This way, it can better tailor the remainder of the degrees scheduling to
the user. After determining the courses the user has both taken and is enrolled in, those courses
can be removed from the overall group of courses that are going to be used to create the schedule
for the user. This removes redundancies in what courses the user has to take. As well, pre-
requisites can be determined for what courses are going to be scheduled, in case the user took
some courses out of the average ordering of the courses they were supposed to take.

3.1.7 User Authentication

Users will initially register on the site and provide some required information to the Graduate!
application. They will then be able to login with their selected username and password. All
sensitive user information will be stored in a safe, encrypted form. The login page will provide
password recovery.

3.2 Possible Implementations

There are a number of technologies suitable for prototyping the Graduate! web application.

3.2.1 Deployment

The application will be deployed using Heroku (www.heroku.com). The service provides an
excellent support for multiple web development frameworks and facilitates rapid prototyping.
Heroku provides free-of-charge small-scale databases and simple deployment using Git.

3.2.2 Persistent Storage

Heroku provides integrated add-ons for a variety of database management systems. Given the
experience of the development team, PostgreSQL or MongoDB will be used.

3.2.3 Server-side Technologies

The requirements for the back-end of the Graduate! web application can be fulfilled by Ruby
on Rails, Django, or Node.js. All of the candidate frameworks provide the routing, templating,
database object relational mapping, and REST api integrations which are critical to the
development of Graduate!.

3.2.4 Client-side Technologies

To create an engaging user interface, the application will rely on a JavaScript library such as
Angular, JQuery, or D3. Additionally, to rapidly develop a clean interface, Bootstrap will be
employed.

Angular is an extensive front-end web development framework supporting templates and

routing. Angular may not be necessary given the choice of Server-side technology.

Implementing a drag-and-drop interface is highly desirable; it will make moving courses

between semesters more intuitive and make the application friendly for mobile users. There are
several technologies for displaying interactive graphics including SVG (scalable vector graphics),
HTML5 Canvas, and JQueryUI.

The use of SVG is particularly promising because they are highly dynamic and would provide

the ability to display custom schedules as an interactive graph. To interact with SVG graphics
JQuery can be used, but alternative libraries such as D3 (https://d3js.org/) may be better suited as
it is specifically designed for the creation of interactive graphics.

3.3 Minimal System

This section describes the minimal system that will be provided by Puzzle by the end of the term.
Puzzle is going to develop a proof of concept of the Graduate! application, that shows how it will work
for a student taking the Software Engineering program at the University of Victoria. Once the proof of
concept is complete, adding other programs should be a simple matter of data entry. As there is only a
month of development time available, it may not be possible to develop a fully functioning scheduling
application by the project deadline. As such, Puzzle will focus on implementing solutions to the major
weaknesses that are present in the current systems.

ScheduleCourses.com shows how a timetable builder system can be developed for a given semester, so
our minimal system will not include such a feature. Rather, our program will leverage the program
requirements provided in order to develop a plan for which courses will be taken in which semester,
without the specific times being evaluated. This decision was made in part because it is difficult to
develop and is already available, and because at this time, the University of Victoria only provides
specific times for courses at most eight months in advance. This does mean that our suggested schedule
will occasionally result in a course conflict, but at this time there is not a way to avoid this.

Our program will focus on providing students with a simple way to manage their program and view how
their scheduling choices affect their course load and final graduation date. It will make it easy for
students to fit electives in their schedule, and provide a list of possible electives available that can be
taken in a given semester. This allows students to work out a schedule that gives them the electives they
desire, as opposed to taking whichever elective happens to fit their schedule. The University provides
information about which courses are offered in which terms. Our minimal system will also include an
authentication system for users to register and login to the system. Each user will be able to select their
program and maintain a saved version of their personalized schedule.

Netlink Integration will not be included in the minimal system. Rather than automatically updating
based on a student’s completed courses, users will manually select their completed courses.

3.3.1 Summary

Graduate!’s main focus is to make planning a student’s degree easier and more customizable,
while pertaining to the University’s restrictions such as prerequisites and term offerings. In the
initial proof of concept, only the Software Engineering program at the University of Victoria will be
included. The minimal system provided will include a web application that supports user
authentication and dynamic schedule creation and visualization based on course offerings provided
by the University.

3.4 Team Structure and Organization

The various components of the project have been broken down into tasks that will be taken on by
individual team members of our group. The tasks include everything necessary in order to deliver the
minimal system, but will be carried out with the final system in mind.

3.4.1 Web Application Development - Brendan Heal

This task involves the design and development of the web application including the selection of
the database, front-end and back-end frameworks, configuration and deployment.
Phase 1: System Design

The web application will be designed with the selected front and back-end frameworks in mind.

Phase 2: Development and Deployment
A basic user authentication will be developed and deployed early so that the remaining
development can occur.

3.4.2 Database Creation - Ali Nobari

This task involves the collection of data from the University of Victoria and creation of a
database for the web application.

Phase 1: Data Collection
Two important pieces of information will be collected from the University of Victoria’s website:

1. The program requirements for the Software Engineering program.

2. The course offerings by term.
Ideally, a scraper will be implemented that can access information from UVic’s calendar page.

Phase 2: Database Creation
A database will be created which allows comprehensive access to the data collected as well as user
information and user schedules.

3.4.3 User Interface Development - Jonah Rankin

A user interface will be developed according to the client’s requirements.
Phase 1: Prototyping
User interface prototypes will be developed and presented to the client. Upon satisfaction with the
user interface proposed, phase 2 will begin.

Phase 2: Interface Implementation
The views will be implemented using the selected front-end framework.

3.4.4 Course Scheduling Algorithm - Spencer Mandrusiak

An algorithm will be implemented to solve the course schedule optimization problem.
Phase 1: Research

The course scheduling algorithm will be researched in order to ensure an optimal solution is
selected.

Phase 2: Implementation

The course scheduling algorithm will be implemented and rigorously tested.

4.0 Conceptual Design

4.1 Application Flow Diagram

The application flow diagram is a representation of the various views that will be included in the
system and the links between them. The grey boxes are tasks that can be achieved from the Program
Management page. This diagram is useful for understanding navigation through the Graduate! web
application.

Figure 9: Application Flow Diagram

4.2 Activity Diagram

This activity diagram serves as a high level representation of workflow through the application. It
describes the flow of various user actions throughout the Graduate! application.

`
Figure 9: Activity Diagram

4.3 Program Management Page Statechart Diagram

This statechart diagram is a detailed description of the Program Management Page. It shows the
behaviour of the page depending on the action that is performed by the user, while using the web
application. It can be seen as a complete description of the Program Management Page’s functionality.

Figure 10: State Diagram for Program Management Page

4.4 Class Diagram

The class diagram is a representation of the classes used in Graduate, and their inter-relationships,
functions and attributes. In order to achieve the desired Model-View-Controller(MVC) architecture,
a number of design patterns will be used.

4.4.5 Observer Pattern

The observer pattern defines two acting classes, the subject and the observer. The subject
maintains a list of dependent observers, and notifies them when a state change occurs. In this
implementation of MVC, all views will be observers, and the models will be subjects. Therefore,
when a model is changed, it will notify all dependent views of the change, and they will be updated
accordingly.

Figure 11: Observer Pattern Example

4.4.6 Façade Pattern

The façade pattern defines a façade object, which acts as a simplified interface to a large body
of code. In order to facilitate the management of the various system models in our design, a model
façade will be included which acts as an interface for accessing the models in the database.
Therefore, the model façade contains a representation of the entire database. Controllers will make
changes to the model facade, and these changes will be saved to the database.

4.4.7 Singleton Pattern

The singleton pattern ensures that prevents instantiation of a class. This ensures that only a
single instance of a singleton class can exist. In order to ensure a consistent state for the model
façade, it will be a singleton. This means that all users will interact with the same instance of the
model façade.

Figure 11: Graduate! Class Diagram

